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Abstract
The first and second-order density matrices for a uniform
electron gas are discussed in the limiting cases of weak coupling

(usual gas parameter r_ - O) and strong coupling (rs + a0)e

8
Attention 1s focussed on the important pair distribution function
and on the momentum distribution. If the high density form of
the momentum distribution as given by Daniel and Vosko (1960)

is adopted, then conclusions can be drawn regarding the meaning
of a Fermi surface in a system of interacting particles.

However, the applicability of perturbation theory to the
calculatiorn of the momentum distribution is thrown into some
doubt by a calculation we have carried out on a soluble
problem. Here we find that the perturbative answer is not
correct, but unfortunately the problem, that of non-interacting
electrons in a magnetic field, is very different physically
from the Coulomb correlation case, Further work therefore
remains to be done on this point.

Variational forms of second-order density matrices are
discussed, and the Euler equations are obtained for one
possible scheme hased on localized orbitals.

Finally, some progress on the non-uniform gas is briefly

reported,
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1. Introduction
The problem of dealing with the Couloabd interact.ons

between conduction electrons in metals has proved ver, formidable
and no complete solution has, as yet, been found. In recent
years, beginning with the important investigation of Macke
(1950), attention has been focussed primarily on the use of
perturbation theory. Unfortunately, the perturbation expansion
does not prove useful in practice in the range of real metallic
densities, which are characterized by the usual gas parameter

ry lying in the range 2 < rg < 55,

In this report, we consider chiefly methods based on a
variational approach to the correlation problem, although
considerable use is made of results obtained in the limiting
cases of weak (rs - 0) and strong (rs -+ o) coupling.

Certain very important guestions connected with the meaning
of a Fermi surface in a system of strongly interacting particles
are not finally answered, but some light is thrown on the
general problem in sections 2 and 3 of the Report.

While most of the work has been concerned with the uniform
electron gas, some progress on the non-uniforam problem is
described in section 6. Here, a good deal of work remains to be
carried out.

We should mention that our earlier work on spin density

waves has not been included in this Report, because, after our



variational calculations were completed more powerful methods
were developed by Overhauser and our ewn work is therefore, at

most, of historieal interest.
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2. Coulomb correlations in a uniform electron gas
We discuss first the role of electron interactions in a

uniform systen. Throughout, we shall focus attention on density
matrices, and in sections 2.2 and 2.3 we present results in the
Sommerfeld model which are valid for the limiting cases of low
and high density respectively. Some inferences concerning the
Permi surface are drawn in section 2.4, but no completely final
result on the change in the momentum distribution as the
interaction strength is varied can be obtained, as some doubts
exist as to the validity of perturbation theory in calculating
this quantity. Some examination of this point is carried out

in section 3 therefore.



We require basically to calculate the ground-state wave

function t(x,x,....xn) for a system of N electrons, where x,
denoter the space co-ordinates ri and spin co-ordinates oi,
from the Schrbdinger equation

HY = ev. (2.1.1)
We adopt as the Hamiltonian of the Sommerfeld model:

N - . 5 are
= e 2 - N ——————
H=-1 z Vgt L ITyT g1 " b, z/ IT4=To|
1

+ 3 (Eirj;")z H T:—:_-_%' , (2.1.2)

where the last two terms in (2.1.2) refer to the electron-positive

background interaction and the background self-energy,
respectively. We now define first and second-order spinless

density matrices y(ry’ r;) and I'(r,’ ra’ ry ra) by the equations

ﬂmwd=N/tﬂmwa”"ﬁhhmamu&Mmup"uw(Lhﬁ

I‘(r1 ll‘a‘!‘1ra) = mz.—"l/ "(lﬁ ‘011‘3'OQXQoocll)'(r101Panxaoo.x“)

d°1 dOQ dxacoodxuo (2.1 o"»)

We note now that the diagonal elements of y and T have direct
physical interpretations. Thus y(ry ry) gives the particle
density, which in the Sommerfeld model is simply the constant



J/Rzr.', while I'(»yPaPPs) is effectively the probability of
electron separation or the pair distribution function. Then,
as Mayer (1955) was the first to show, the energy per particle
¢/X is given by

£ - (,_,g;,)" (920" ) ]t = v [ (1 - P(2))%az, (2.1.5)

where F(%) = P(|r’-r|) is the pair function, normalized to unity
for large |r’-r| .

Since we shall utilize the results later, we note that the
usual Hartree-Fock solution based on a desterminant of plane

waves ylelds the forms:

¥ ik, rt-r])
y(r'r) = k{r —};f,'.—f:;?- : Ji(p) = (#in p = p cos p)/p?
(2¢1664)

Ji(kalr’=r{)~a
et w1 -3 [ e )

where kr is the magnitude of the wave vector at the Fermi surface
and is related to the mean interparticle spacing by

k,r, = (%§>} . (24107)

Using atomic units, it follows from (2.1.5) and (2,1.6) that the

energy per particle is

A @ e @ L 1.8



2.2Pair fupotion and first-order matrix in low-density limit
The low-density form of the pair function has been discussed

sarlier by March and Young (1959) using the electron lattice
model of Wigner (1938). We simply summarize the results by
saying that as Ty becomes very large, the electrons relative

to a given particle we have singled out, and placed at the

origin of co-ordinates sit on the sites of a body-centred cubic
lattice, As re is then reduced somewhat, the electrons can be

thought of as represented by harmonic oscillator functions
2 2
v = (%) exp (-%g— ;3 as= rs-; . (2.2.1)

The results obtained by March and Young (1959) for the pair
function are represented imn curves 1 and 2 of Fig. 1, for cases
rg = 100 and Py = 4. PFor comparison, the Fermi hole result
given in (2.1.6) is also shown in curve 3, We emphasize that
while curve 1 should be reliable, curve 2 represents an
extrapolation beyend the range of validity ef the low density
form (2.2.1), and is given solely to show the qualitative influence
of varying Tge

We shall now indicate how this work may be generalized to
Jield the first-order density matrix and momentum distribution
for a low-density gas., From the orbitals (2.2.1), centred on
each lattice site, we bulld a Dirac density matrix, This will

not of course, contain the condition of translational invariance,
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Fig. 1. Pair functions for an electron gas
Curve 1. Low density form for r, 100
Curve 2, Extrapolsted low density form for r, = 4
Curve 3. Hartree-Fock pair function of eqn. (2.6). correct in limit r, -+ 0



that is the diagonal element will not be a constant. To obtain
a result consistent with the Sommerfeld model we must average
over all positions, and then the desired first-order density

matrix is easily shown to be

y(r'r) = ;E; exp (- % |r‘-r|'>. (2.2.2)
The form (2.2.2) as is easily seen, satisfies all the essential
conditions, but its range of validity is, of course, restricted,
as we shall discuss below. Nevertheless, in conjunction with
the high density results of §2.3, it may be used to draw some
interesting conclusions about the Fermi surface (see §2.4).

At this stage, it is enlightening to examine the momentunm
distribution corresponding to the first-order matrix (2.2.2), and
this may be found as follows. We require the occupation numbers
P(k) of plane wave states V'*e'ik'r’ where V is the volume of the
metal and thus we write

r(r'r) = § ZP(k)o-ik'r' olk-T, (2.2.3)
X

or remembering that the density of states in k is (1/8x%) V and

using Bauer's expansion for a plane wave as & series of spherical

waves:
Y(r'p) =r;y ] P(k) %2' 4xk?ak, (2e2.4)
0

It is convenient at this point to measure k in units of the Fermi



momentum k., that is we write K = k/kr, and then (2.2.4) becomes

sin k_, K|r’'-p|

k2 ,®
¥(r'r) = - [o PR T & (2:2.5)

Inverting this relation and using (2.2.2) for y(r’r) we find

3 [ B

- “? g2
PR) = Zp oxp ( (B) =7 x ] (2.2.6)

8
where we have eliminated kr using (2.1.7). As we have remarked
earlier, the range of validity of (2.2.6) is restricted, because
the orbitals ¥ on different lattice sites have been assumed
orthogonal, whereas this is only rigorously true in the limit
T, * @ However, a rough estimate of the range of validity
may be obtained by noting that the occupatien numbers P(K)
must always lie between O and 1. Since P(K) as given by (2,246)

has its maximum at K = 0, we must have that

-'ﬁ: <1 (2.2.7)
r

or

x" > 9.30
The kinetic energy per particle, in the approximation implied

by (2.,2.,6), is easily shown to be

%ﬁ. ;-rl; , (2.2.8)

in agreement with Wigner (1938). Later treatments based on more



careful study of the dynsmics of the vibrating electron lattice
(Coldwell-Horsfall and Maradudin, 1960; Carr, 1961) change (2.2.8)
somewhat, but will not affect the overall validity of the

arguaent presented above, We note finally for the low-density
1imit, that the momentum distribution is a classical 'Maxwell~-
Boltzmann' form: this ie in sharp contrast to the high density

results to which we now turn.

2,3 Pair function apd first—opder density matrix ip high-densjity
limit

Using the perturbation theory of Gell-Mann and Brueckner
(1957) in suitable form, we shall now discuss the way in which
the pair funetion and the first—order density matrix develop
from the Hartree-Fock forms given in $2.1 egquation (2.1.6). In
order to do so, it is very convenient to introduce a generalization
of density matrices to include also the time: this will greatly
facilitate the setting up of useful equations from which the
matrices can be determined. As a simple example, let us
consider the Dirac first order density matrix for a system
deacribed by a single Slater determinant formed from one-body
orbitals ti(r). This may be written

DRI A CHIAOR (2.341)
i

where the summation is over the occupied energy states. However,

10



if we now introduce a generalized first-order density matrix

-iE,t’' 1B, t
y(r't'rt) = E: ti!(r‘)ti(r)e 17 o1 ’ (2.3.2)
i

where E1 are the occupied energy levels, then this is easily

shown to satisfy the equation

H‘{ =1 %¥ ) t st (20303)

and this may be used to calculate y. But in fact, the above
time-dependent matrix, is a special case of the one-particle
Green's function used by the field theorists in their approach
to the many-body problem (see, for example, Klein and Prange,
(1958)).
Indeed, the convenient way to make the conneection is now
to start out from the definition of the Green's functions and
the equations whiech they satisfy. The Green's functions or
propagators are sulitably defined matrix elements of Heisenberg
field operators taken between exact eigenstates of the system.
Following Klein and Prange we may write the one-particle and
two-particle Green's functions as
&(xx') = 1 < N T{¥(x) ¥*(x')} ¥ > (243.4)
and
O(X1XaXsXe) = 12 < N Tf ¥(x¢)¥(xa)¥"(xe)¥"(x3)] N >, (2.3.5)
where T is the time ordering operator of Wick, Then if we denote

1u



the particle interacticn by v(r,s) we have the fellowing equation
for G(x, x')

(% AR | g% G(x,x’') = & [ QA3rv(r-r”)e(r"trt,r"t'r’t’' )=6*(x-x’)
(2.3.6)
and this reduces to (2.3.3) when the interaction is neglected.
Also we have

G(x4XaX3xe) = G(X1X3)E(X2Xe) = O(x4x4)0(x2Xx3) +

+ / a*y, a%ys a*zy a*za O(X1¥4)0(Xa¥2)I(¥1Y22122)0(2422Xaxs )e
(2.3.7)

Here I is a complicated interaction operator, which depends on
the Green's functions and therefore to obtain exact solutions
seems out of the question. However, as we discuss below, in
the high density limit it appears possible to make progress in
the electron gas problem by inserting the first approximation
for G(x1Xxax3X4) inside the integral, provided we approximate
sufficiently carefully to the interaction operator, By now
writing down the exvectation value of the Hamiltonian, we make
the indentification between the Green's functions defined here
and the density matrices of §2.1, and the results may be stated

as follows:

Lt &(rtr' t') =« 1¢(r’ r) (2.3.8)
tiats

and

12



Lt G(rtr tr’ ¢t P’ t') ==2P(ry! P2’ pr')e  (2.3.9)
t/at+

Proceeding to the high-density gas problem we make use of the
work of Kanazawa and Watabe (1960), which shows that in the high
density limit we must approximate I by

I(y1Y22182) = 8*(y4-8y) 0*(ye-22) 1V(y1-¥a), (2.3.10)
where the modified interaction V is given by

V(y1-y2) = v(y1-ya) + ] a*x a*y v(y,-x) Go(x-y)

Go(y-x) V(y-y2). (2.3.11)
Here Go 18 the first-order Green's function in the Hartree-Fock
limit and the form of the effective interaction has been
discussed by Hubbard (1957). Then, in the Gell-Mann-Brueckner

approximation,

G(rtr/trt"r’'t") = Go(rtrt”)Go(r'tr't") - § Go(rtr’'t”)Ge(r’trt”)

- [ a*y1a*ys Go(rty,)Ge (r’ tye)V(yi=ya )80 (F1rt”)Go(Fer’t")
(2.3.12)
+ '}/ a*y,8*y; Go(rty)Go(r’ tya)v(y1~ya)Be(y1r't7)Go(yart”),

We attempt at this stage to evaluate the pair function in
the approximation in which we consider the first three terms on
the right-hand side of (2.3.12). The first two terms lead to
the usual Hartree-Fock result given in §2.1, equation (2.1.6),

13



and we write out only the third term explicitly, called GBG
in what follows. It is most convenient to proceed by Fourier

analysis, and to write

Gm(rt P trt'r tY) = Téiﬂ"] dq e14°("")am(qt-t').

(2.3.13)
If we Pourier tranaform V and Go, then the result may be written

Gm(q) = -(ﬁ-y'] dk de Ak’ de’ Aw Go(ke)Go(k-q,c-w)

V(qw)Go(k'e’ )Go(k-qe’ +w), (2.3.14)
Introducing the function

Glaw) = A [ @k [ ae Go(arkesm)oo (xe) (243415)

as in Dubois (1959) we may simplify (2.3.14) to read
" Qo?(qew)/x%k.q*
GBG(Q) = -(-24“-)1.[“ dw ; +J§:a§— . (2.3.16)

Numerical evaluation of this correction to the Hartree-Fock pair

fanction is now in progress.
The method just described may also be applied to the first
order Green's function to yield the first-order density matrix.

Results essentially equivalent to the momentum distribution of
Daniel and Voske are thean obtained.

14



2.4 The mesning of & Formi surface
The fact that we can obtain the momentum distributien in

two limiting cases has interesting implications. For, as the
work of Daniel and Vosko shows, the discontinuity in P(K) at

the Fermi surface for ry = O is not removed but only reduced

as the density is lowered. While this result seems not to

have been established rigorously outside perturbation theory,
there seems strong empirical evidence from the sharpness of

the Fermi surface in real metals that such a discontinuity does
in fact persist., However, our low derisity treatment rg = o
could equally be made the basis of a perturbation treatment,

and no sion of the discontinuity would then occur. Thus, the
evidence seems clear that as we follow the momentum distribution
as it develops from the two limiting cases of small and large

ry there must come a oritical coupling strength, or a critical
density, at which the discontinuity in the momentum distribution
is reduced to zero., For lower densities, 1t then appears that
the concept of a Fermi surface will no longer be useful. We
believe at present that the critical value, r, say, will 1lie
outside the range of real metallic densities, or in other words
that r, will exceed 55, No quantitative evaluation has so far
proved possible however, Questions also remeain as to the nature

and order of the 'transition' oeccurring at Poe We 4o not expect

that the pair function will undergo any marked changes at r, and

15
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probably, to obtain a clear picture of the transition, it will
eventually prove necessary to examine the third and higher-
order density matrices,

Finelly, to give an indication of the change in the
momentum distribution as the density 1s varied, we have plotted
in curve 1 of Figure 2 results for P(K) as given by Daniel and
Vosko for the high density values (rs 4 2) and by (2.2.6) for
the low density region. Curve 2 for rg = 16 should be viewed
with some caution, but the result for r, = 100 (curve 3) should
represent a good approximation. The great difficulty, as we
have stressed, is to obtain a sufficiently good approximation

to the ground state in the region 2 < r_ < 5°5 and to locate

8
the eritical value of ry with precision.

17



3. of bat th r at rop moment
distribution (with D, Hilton)

Since the above work was completed, we have been concerned
about the possibility that the Daniel and Vosko theory of the
momentum distribution of a high density electron gas may not de
physically correct. Thus, as they in fact point out, the
discontinuity in their momentum distribution may arise from
perturbation theory, because it is already present in the zeroth-
order problem.

In view of the importance of this question, we have sought
a soluable problem in which perturbation methods can be avoided,
and yet the electron momentum distribution can still be calculated.
It seems to us that there is a problem; not, unfortunately, closely
related to the correlation problem; which we can solve exactly,
in which a perturbation is applied to an electron gas. This is
the case of non-interacting electrons in a magnetic field, and
in view of the interest in the momentum distribution calculation

by a non-perturbative method, we discuss it in some detail below,

3¢1 Bloch matrix and momentum distribution for non-intepracting
electrons in a magnetic field
As remarked previously, it is fairly clear that a momentum
distribution calculated by perturbation theory will contain a
discontinuity if the unperturbed solution does so. It is not,

18



however, clear that the exact solution will be discontinuous.

In order to investigate the exact solution for the problem of
free non-interacting electrons in the presence of a magnetic
field, we note that the exact Bloch density matrix has been given
by Sondheimer and Wilson (1951) for this case for an infinite
number of particles. It may be written in suitable units (the
magnetic field being in the Z-direction) as

c(z’ 2 8) = £(B) exp[- % (x'y - y'x) - ‘{;ﬂ) {(x-x')% + (y~y’)?]

+ (z=2')2/u8) (3e141)
where

g(B) = H eoth HB and £(B) = (ﬁ cosech HB.

It is easily seen that when the magnetic field H tends to zero,

we recover the field free solution

-(r-r’)2/4g
(;J')T e (Note that here the energy is
expressed in Rydbergs). (3.1.2)

We shall work with the gquantity

D( B) = / c(x &’ 8) ax’ (3e1+3)
where
k's -ik.r’ :
o ) =[e” "o oz ¢’ 8) & ag’ (31.)

Then by use of the relation pointed out by March and Murray (1960)

19



p(g' £ %) = 51; [ % —_ » (3e145)
O-1c
we see that
O+l D(k 8
Q(5%) = [r(; k' Q)ax’ = gir [ X —— . (3.1.6)
OC=loe

We must remark that it is only in special cases as, for sxample,
when the electrons are free, that Q (kg %) is the momentum
disgribution; we will return to this point later,

If we define the mixed matrix

’

ik.
C(kgB) = f e " c(z'c 8) ar’ (3.1.7)

it is easily seen that

D(g8) =C(kEB) o0 (31.8)
We perform the transform (3.1.7) by use of the formula
+o0
[e't"a*z""dx - J %e"a/t, Re t > O (341.9)
and find that
2 - 2 2 -2 -
C(k £ B) = 5* :-i%; °-Bkz ° (kx +ky )/89 " /L;g(x’-o-y’en(kxy kyX)er'E.E
(3.1.10)
or
=Bk 2 ~(k 24k 2
D(k B) = 5ooip fs ° Z e (kg™ y )/g. (3e1011)

20



Now % = 255%_&21* B as H- 0, and
1im cosh HBf = 1, 80 that

H-0
1in D(k 8) = o~P%;
H-0

which is the correct answer. For we have for the momentum
distribution in this case
s &) = ‘2—11:1'/ e o g, (3.1.12)
When k? > % we elose the contour by a semi-circle at
infinity in the right half-plane, The integrand
vanishes in this semi-circle, and since no
singularities are enelosed the R(g %) vanishes,
On the other hand if k? < %, the integrand vanishes
in a semi-circle at infinity in the left-half plane. However
the contour now encloses the singularity residue 1 at the origin.
Thus

O+l _Bka
A &) =3y | Sg—ofFas -

Ow100

1 k? < 2

’ (3.1.13)
0 k2 > g

the correct result for non-interacting electroens in the absence

of a magnetic field.
When the magnetic field is not zero, we have

21



O+Zee e-a(xz'-z)a-(xx%ky')/g(a)

] ' _ 1
Q(;) = /P(g k )d! = m[b 5 cosh BB as
C=
o+ie  B(%-k 2-H) -(k_2+x_2)/g(B)
B o z e XV
= m/, 2 T .  (3.1.14)
O=100

Again we close the contour by a semi-circle at infinity in the
right half plane. The integrand vanishes on this semi-circle
ir
L = kz2 -H< O,
Thus
Q(k 3) =0 ir k,? +H> L (3.1.15)

Thie result is at first sight a little surprising: we would
expect the diseontinuity to persist in the z-iirection, we
might also expect it to remain in the same place, i.e. k” =¥
when kx’ + kya = 0, for the longitudinal motions of the electrons
are unaffected by a magnetic field. However, the result may be
explained by supposing electrons originally moving wholly in
the z-direction (that of the magnetic field) to jump into states
energetically more favourable and for which there are non-zero
components or momentum in directions transverse to the magnetic
field.

Evaluation of the integral (3.1.14) does not seem possible
when the equality in equation (3.1.15) does not hold, for there

are essential singularities of the integrand on the imaginary axis,
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We are thus compelled to proceed as follows, We put

E=§ -k?® -H; no= (k7 o+ k2,
We now have
O+l +00
BE_-n tan HB E(o+it) _-n tan(t+io)
d 2_e I o at
me| ST 0w e e
O=ico - 00

(3+1.16)
and we will attempt to prove this function continuous as a function
of n by showing that its derivative with respect to n exists and
is finite everywhere, To do 80 we take the derivative under the
integral sign. It may be noted that we have already interchanged
orders of integration: we have taken a Fourier transform before
the inverse Laplace transform. However, in that case, there 1is
less apparent danger than here, where we seek to prove the
derivative always bounded; for we must guarantee that if the
transform of the derivative is bounded, then so is the derivative
of the transform, We give an argument to justify our procedure
which can also be used, with the necessary changes, to justify
changes of order of integration.

We note that the relation

/; p(5 1 2)e P> oy - % c(s n B) (3.1.17)

can be made rigorous when C is a Dirichlet series; when there

is a finite number of particles, and the energy spectrum discrete,

We have the functions of the form
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pE m &) = ) V(& m) H(Ey Q) (3.1.18)

1
-6B
cEne) =) VyEme . (3.1.19)
1
1 B
H(B, %) = 1<% (3.1.20)
0 31 > &

(The B, are the one-particle energy levels).
Now when there is a finite number of particles, the allowed
values of momenta (and so % and 1) form a discrete set. We

must take finite differences:

p(Em+h¥) -p(En+Z)
Ap = i . (3-1-21)

and obviously

/ ap ¢ B% ay = ac/B. (3.1.22)
(]

Now having passed to the limit of an infinite number of particles,
we have a quasi-continuous function in n, the l1imit of the sets of
functions obtained by joining neighbouring allowed values of n by
straight lines. For such a function, say P, the derivative is
well approximated to be the finite difference of p for a finite but
very large number of particles, i.e, if

Py, = lim Py? N the number of particles,

aP.
<L - 11 apy.
an Netoo
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Such considerations must hold for both sides of equation (3.1.22).
Thus

dop . ac
L T2 o Pe ag = gk / 8.

Our problem now consists of proving the boundedness of

o 4Et -n
AIL-)—W an 1t gtt) a¢, R
L (o+it)(1 - e~<H10+IT)y (3.1.23)

We will use the second mean value theorem, which states that if
¢(x) is a monotonic function, and £(x) any other function, then

/ ¢(x)r(x)ax = ¢(a)/ f(x)ax + ¢(b)[ £(x)dx, a < E < b,

(30 02'4)
Let us apply this theorem to the integral
O+l where £(B) is periodic on the contour
1=k [ £8) 4
x1 J of integration, and has a finite mean value m.
O-1c0
We write
£(B) =m + g(B). Then
C+ico +00
n, 1 [ g(8) B, L [ gosit
I=2+2‘Ki/ 8 dﬁs2+2t[&§m-}dt. (3.1.25)
G=i0 - 00

It is now sufficient to consider

7 E(°+¥t) and to show that it has an upper bound
o+ independent of a (we let a + ).,

We put
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EER L oi+t' .

We then see that the real part is monotonic and (3.1.24) can be

applied immediately:
a &(a)

o/ &lgHit) o 1/ glo+it)at + ?%:'] glo+1t)dt. (3.1.26)
°

&(a)
Since g(o+it) is periodic in t with mean value zero, we see that
the two integrals on the right are bounded and as a - » the second
term on the right hand side goes to zero so that the upper bound
for the left hand side is independent of a for a very large. The
fact that £ depends on a does not affect the argument because in
the first integral of the right hand side, we can simply choose
E(a) to make the integral a maximum, to obtain an upper bound, It

can be shown also that £(a) tends to a constant as & - .

.
o+1

/ Srier go+it)at = l Elgait)t 4 [ Blotit)t o (3.1.27)
0 o x

where x is chosen such that -r:—tz is monotonic in the interval

As for the imaginary part of o= T » Ve write

(x, a)s The first integral on the right hand side is obviously
finite and is independent of a, and the second integral may be
treated as before,

We have thus shown that if £(B) is bounded and periodic

on the contour of integration, the integral
O+ioo

2’:1 [ is bounded.
C-icw
We apply these observations to the integral (3.1.23). There
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is8 a product of two periodic functions in the integrand. The
period of one depends on %, and the period of the other on H.
The periods of both are independent of 7. The product will
be periodic if & is adjusted such that the ratio of the two
periods is rational. It is therefore possible to state that$
For every value of £ such that £/H is a rational number,
the derivative of Q(; Z) with respect to n is bounded; 1i.e. for
such values of £, Q(k) has no discontinuities as a function of
kx and ky’
We note that we can approach any point £, with a £ obeying
the condition expressed in the last statement as close as we

please,

3.2 Difficulties of direct use of double Fourier transform of

Bloch matrix

Inspection of equation (3.1.10) makes it clear that the
second Fourier transform may be carried out by use of (3.1.9)
and one might therefore inquire why we have not simply carried
out the second transform instead of working with the guantity
D(g, B). The reason will now become clear, for we will examine
the consequence of such a procedure,

We note that Sondheimer and Wilson's expression is of the

form

C(ry Za B) = £(Hopixxa) &(Ei-K2 B) (E =H &), (3.2.1)
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£ is independent of B, s0 that on performing the inverse transform

we obtain
p(ryra %) = £(Heps x r2) 8(2y = 22 &)e (3+2,2)

Now the momentum distribution is the diagonal element of

P(gs Xa) = [ o(£s £a) o EE R o ag, (3.2.3)
We put

g(zs - 1a) = [ Q(x) ot (2 Ee) ax. (3.2.4)
Then
P(ks Ka) = / des aza (8 51 % £2) / d;.e-i(ls‘-}s).5101(52-5).£2 ax)

= [ F(k, + K ko + k) Q(k) dk, (3.2.5)

where

P(ks ka) = / ¢ o BE THaoke dp, 4re (3.2.6)

It can easlly be shown that the diagonal element of the double
Fourier transform of a function of the form F(H.p: X 2a) is

independent of kx and ky :

P(kk) =C é(gz) b(kz), where C is some constant,

We therefore obtain

P(k k) = d(k)C / Q(kx ky kz) dk dky; C some constant.
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[The d8-function appears since we have taken a double Fourier
transform and so obtained the momentum distribution for all
electrons, and there are an infinite number of then, ]

The resulting momentum distribution is constant in the
kx and ky directions, This is obviously physically incorrect.

We must expect that when magnitude of the magnetic field
is very small, the true momentum distribution anproximates
closely to that of the electrons in the absence of the magnetic
rfield. How are we to explain this peculiarity of the Sondheimer
and Wilson solution?

We think the answer is as follows. Sondheimer and Wilson
avoid the troubles earlier workers encountered with boundary
conditions by working, not with a finite system, but with an
infinite one. They obtain the solution of the Bloch equation

HoC(z'£B) +35 (' £B)=0 (3.2.7)

3

82

with boundary condition
c(z’ £ 0) = 8(z’ -) (3.2.8)
(H is the Hamiltonian)
and there can be no doubt that their solution is correct for the
infinite system, However, supposing G,(g’ r B) is the Bloch
matrix for N-particles, the momentum distribution in the limit

as N»+ o is the inverse Laplace transform of
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-ik.pr’ 1ik.
c(‘ B a) a % 11-[ cl(gl L p)a 15 E e ! £ d,!: d.‘!.:'. (302.9)

Noaow
Volume of
system
In taking a double Pourier transform of the S-W solution we
have reversed order of integration and limiting proceass, and
this appears to be the reason why we obtain an unphysical answer.
(1t should be noticed that the limiting process here is of a
different nature to the one we make on equation (3.1.22), Here
limits of integration vary as we vary the number of particles).
In working with the mixed matrix C(k r B) we have avoided
these difficulties. Analogous to (3.2.7), the mixed matrix

obeys the eguation

"poxice) + ¢ (kize) =0 (3.2.10)
with boundary condition

1k.r
c(klgp 0) = e , (3.2.11)

and it can be readily verified that the guantity defined by
equation (3.1.,10) satisfies equations (3.2,10) and (3.2.11).

3¢3 Relation to Van Hove's conjecture on use of perturbation
lheory
In concluding this discussion, we shall refer to a conjecture
by Van Hove (1959) which has only recently come to our attention.
Van Hove has suggested that whereas it is known that with
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attractive potentials the zeroth order Fermi distridbution cannot
be used to generate tne correct solution when the interactions
are switched on, the same might also be true for repulsive
interactions,

While we are not able to draw a decisive coneclusion about
the correlation problem from our work above, we can say with
certainty that in the kx and ky directions the momentum
distribution does not have a discontinuity. However, while we
note that, if generated by perturbation theory, we can expect
such a discontinuity to be preserved, it should be pointed out
that the perturbative treatment leads to a pathological result
in this case. We do feel however that our ability to carry
through the calculation of the momentum distribution exactly
in this case 18 of considerable theoretical interest. We are
also of the opinion that the result may have practical significance
and we are at present planning the numerical calculation of the
momentum distribution in the presence of a magnetic field.
Compton effect studies or positton annihilation experiments in
the presence of a magnetigf field may prove illuminating in the
future,
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he Y t t t

iwo-body orbitals

We have 80 far discussed chiefly the extreme limits of
weak and streng coupling. Unfortunately, the methods used
there are not adequate for the range of intermediate coupling,
and we therefore turn our attention at this point to more general
consideration of the form of the second-order density matrix,
All evidence seems to us to point to the fact that this quantity
affords the best available tool for dealiné with many-body
problems in which only two-body forces operate.
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L.1 Discuseion of necessary end sufficient condjtions for

h £ ty of second-orde ty mat
In this section we shall formulate necessary and sufficient
conditions such that a many-body wave function expanded in terms
of orthonormal two-body orbitals i¢4 (P1Pa); shall be antisymmetric,
These in particular provide necessary conditions that the type
of second order density matrix suggested by Young and March (1960),
viz:

N(2N-1)
I‘(g"g:'] £1£a) 't ¢¢‘ (£1'£a') ¢6(£" £z) (4e1.1)
&=
(where 2N is the number of particles) shall be derivable from
an antisymmetric many body wave function. In §4.3 it will be
shown that with the particular form of orbitals chosen by Young
and March in method (B) of their paper (which method is at first
sight the more promising of the two they propose, since it
reduces to the correct Hartree-Fock solution in the high density
1limit) the conditions cannot be satisfied, at least in one
dimension,

We will also discuss the question of the sufficiency of the
conditions on the orthonormel orbitals {¢,(rira)] for density
matrices of the type displayed in equation (4.1.1) to be derivable
from an antisymmetric wave function. The sufficiency follows
from an assertien by Bopp (1959), of which Coleman (unpublished
work; 1961) has questioned the validity and has claimed to have
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produced a counter example. Both the lacuna in Bopp's argument
and Coleman's counter-example will be examined in §4.2,

We take a cemplete set of two-body orthornormal orbitals
(to be referred to as geminals) {¥,(rigs)} and expand the
antisymmetric wave function for 2N particles in terms of them:

!(£1£300£zn) = E: c&1‘30"n '&1(2128)"'(2324)000*6 (r2N-1~2l)

6 ..&
R (4el1.2)

C&“’..c must be invariant under permutation of 4,...4N and

N
E: |°c,..cnla =

61 -.‘N

also

The second order density matrix is

P(ps'pa’|L1B2) = Z 8,00 ":!(3152)*4(2132), (4.1.3)
e
PEPELCERE (4atls)
)
where
= N(2§ - 1) }j c'c,..on Cetan .ty
Gg..&

One can see that 8,10 = ‘&4‘ = the matrix (ac,c) is Hermitien;
it is thus diagonalisable and there exis geminals [¢6(£1g,)l,
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which we shall call natural geminals, such that

P(ps'pa’|piga) = }[Tb4 ¢6‘(£"23') ¢$,(c1L2) (L4e1.5)
4,
Now the antisymmetry requirement
¥(p1LaeoEoy) = = ¥(Lal1.eBoy)
implies that

Z 06103..&1‘[*4(‘1:122) + *&a(ga}.‘,i)! =0 (8.11 42 ’&3!"41‘)
<, (4eot.6)
and the requirement
¥(p1LalaLaees) = = ¥(L1TaLaleoes)

implies that

Z 0514103. -.GN{*61 (,1,',1,1:2 )*43(2324) + *&1 (E1£3)*4z(£a£4)} =0
L4482
(811 €3,000¢y) (4e1.7)

Equations (4.1.6) and (4.1.7) are necessary and sufficient
conditions that the expansion in equation (4.1.2) is an allowable
many-body wave function. If the expansion is in terms of the
natural geminals, equation (4.1.6) is replaced hy
$o(L1k2) = - ¢,(pars) (al1 ¢). (4e1.8)
Let us now consider a density matrix formed from a finite

number of geminals,

r(£1'£3'|£1£3) = f LYIY) "f(£1'£8')'6(£1£2>0 (4e1.9)
2'¢
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The same orbitals, and no others orthogonal to them appear

in the wave function, since we have

2
}: |c¢“a..4n| = 0, ¢, > K.
2oty

Hence

K
!(£1£3000£2N) = ycc1'006n "‘ (£1£a )""'&I(EZN—1£ZN) (h.1 010)

&q..&n

Conditions (4.1.6) and (4.1.7), where now there is an upper
limit K on the summations, form necessary conditions that we can
choose a matrix of the form (4.1.9). For particular choice of
8,149 however, the conditions are not proved to be sufficient.
In particular, if we take N(2N - 1) antisymmetric orbitals and
prove that an antisymmetric wave function for 2N particles may
be expanded wholly in terms of them, we have still not proved
that these orbitals are natural geminals and so the density
matrix is of the Young-March form (equation (4.1.1)).

However, Bopp (1959) states that there is an upper bound

to the 8,0°
0<a,, <1 (bet1o11)

If equation (L4.1.11) is true, then it is easily seen that the

second order density matrix for an antisymmetric wave function

formed from N(2N - 1) geminals must be of the Young-March form.
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However, equation (4.1.11) 1s not established beyond doubt, and

thus will now be discuassed.

4.2 Bopp's assertion and Coleman's counter example

Referring to the expansion of the second order density matrix
in terms of natural geminals, (equation (4.1.5)) it can readily
be shown that if

0<b, <1, (4e2.1)

then this also holds for the diagonal elements of the matrix
in any other representation (that is, equation (L4.1.11) is also
tme) .

Let us write the many body wave function as
=54, 7 o™ (4:2.2)
n K

where {¢n} is th;naet of natural germinals,

ux(n) =ﬂ Uki(n) (1) (K labelling the configuration
i = 3 ka...km

and the Uk(n) are orthonormal and defined by the integral equation
[ 42 (13 823 1, (2) a23) = 3, 0, ) (1),

We now antisymmetiize Uk(n) and so form a normalised determinant
Dk(n) (3¢++2K) by whieh we replace Uk(n) in equation (L4.2.2),
We now have a product
#, (12) Dk(n) (3..28). We antisymmetize this
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and again normalise, obtaining a function
™ (1,2,...,28).
Now Bopp gives an upper bound for the bn:
b, Z le ¥ x(®) 58 (402.3)

K
which he replaces by

bn € 1.
It is easily seen that this last equation immediately follows
it
< xk1 Xka >=°k1k3. ('4.2.’4)
It can be shown that
$(12) = ) gy 5™ (1) 1,0 (2) (4.2.5)
in
where QApp = o
and if Xy + 0, then
@y, =0 allp+nm (4.2.6)
aqm =0 all q+ <.

Thus apart from a normalisation factor xK is equal to

Zcpp Za“ u&(n) (1) Un(n) (2) Uy, (3) ..o Uk2N(2N) (4.2.7)
] ‘m

Consider a second function xx. This is,

gzpp ; agy U, (1) v ® (2) Ug, (3) eee T (2M).(4.2.8)
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where Z ?;PP is the antisymmetrization operator,

P
Now if the products ﬂ U, (n) andrI U, (n)
1 | 1
differ by more than two functions Uk(n), it is easy to see that
<Xg" X > =0 (422.9)

Also, if the two products only differ dy one function then by
condition (4.2.6) equation (4.2.9) again holds.
However, if the products differ by just two functions, say
Ue, (3) # T (3)

U, (4) # T (8)

then <« XK' xx > can be seen to be proportional to

t 3 E E 3
® xske * kske T % Kake Fxaxe

This expression will usually dbe zero because of condition
(4.2.6), but not always. Thus equation (4.2.1) does not
immediately follow from equation (4.2.3), and in fact Coleman
claims a counter example to equation (4.2.1) which we now examine.
First we derive the expression for the upper bound for bn which
Coleman uses, examining the conditions carefully.

Let anl be a set of geminals, and expand the wave function

T2 o ) = ) Cpdy (12) (3 e W) (M= 2K)  (4.2.10)
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with < ¢n!¢n > = bmn’ < xn'xn > = 1,
and ir
<XgXp 2= b'n, the ¢n are the natural geminals,
The density matrix is

r(1'2 |12) = Z c,* ¢, $,(12) ¢,(12) < x,* %, >
mnn

Thus if and only if the ¢n are natural geminals,

- a Moy |
a., = e 3 (M - 1),
We may then derive an upper bound for 8 = bn:
b, = |cn|2 = |< ¢n(12)xn(3..u)| ¥(12..M) > |2

- 2
= |< ¢ xnIAIY > |
(A being the normalised antisymmetrization

operator for M particles). This is also

20
By = 1< YIAle, xp > [ € < ¢y x lAl8, x)
The equality will only hold provided
Y a Af¢, xn].
Now Coleman takes a 4-particle wave function of the form
v(1234) = pA{#(12)¢(34)}. (u some normalisation constant)
and shows that with a suitable choice of orbital ¢(12),
< 9(12) ¢(3L)IA|p(12) ¢(34) >
can be made arbitrarily close to 1/3, where Bopp's upper bound is 1/6.
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However, we have remarked that the bound for 8n only holds if
’n is a natural geminal, and this is what Coleman must assume
for his counter example to be valid. However, he fails to prove
that the orbitals he chooses are natural geminals, and without
such a proof his counter example cannot be accepted.

We therefore conclude by remarking that neither condition
(4+2.1) nor Coleman's counter example is bevond doubt, so that we
cannot provide conditions which we definitely know to be sufficient
for the variational validity of matrices of the form suggested by
Young and March. In view of the suggestive and promising nature
of the form expressed in equation (4.1.1), further work in this
direction would obviously be valuable.

4.3 Two Body Bloch Orbitals

To introduce the Wigner lattice of the low density limit we
will take the two body functions to be

Yoy (Fi7a) = ) Oy [Ka oK) LU vEg)eEs 1(ka+Ey)ers

S Y (Ue3.1)

where the 5. are reciprocal lattice vectors,
When the number of particles becomes very large, the many body
wave function !(£1£a..£l) is approximated to by

] d-!id-;au.ds‘ c(;i;‘l;‘!‘l (X} s.-ﬂs')* 1s.(£1£a)ooo’ _15'(£l-1£l)

e (4.3.2)



(fy 1s the volume of the Brillouin gone),
Now we must antisymmetrize in py and pp, etc. We can do this
by making

C(kikaleos) = = C(kakiloos) (4e3.3)
(here and below the unspecified indices are assumed to take any
value, provided we impose the condition

v(ks | ka) = v(ke | k¢) (Le3el4)

Equation (4.1.7) becomes

Z [ Q1 dKadadhe C(KoKa |Kake | ) V1 +E, (K2 +K, ) V(Ko +K,, | KesK,)
B, B ei(gwgm) .;;101(;:,.»'5,,) -5201(53"'!“)-!,301(54*'5,)'24

LR

Z [ dkqdkadksdks C(k1Ka) Kakal se)v(ks +§m|52+5n)7(53+5u| Ke+K,) x

sm;xg, g L SEIEICE WEIEIEE REEL0 W2
sy

~1(k1+Ka) ey ~1(xa+Kb).La -1(x+EKa).Es
Multiplying both sides by e e e

-1 (‘,54 +§5 ) oLa

x e and integrating over all space, we obtain

0-functions, giving

Cligrkal Kaka |+« JV(ige 4K | 2 4Ky ) V(s 4K | Ko +Eg)

= = C(g1%a|Kakel o) V(i1 45 | 3 +K_ ) vika+K, | s¢+K§) (4.3.5)
Now for one-dimension the functions proposed by Young and March
obey equations (4.3.1) and (Le3.4) if we force periodicity in ki
and k; (although this is not essential to the argument, only
affecting the precise nature of the labelling of the v(;, 5,)
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U

with K and %), rfor, putting y(x) = p(x) + x, p a periodic
function, the above author's functions (equation (5.2) of their
paper) may be rewritten

brxg (F1%2) = 5 Doy o (xeZa) = ¥y (xex1)]

with

¥ i(k¢-ka2)P(x4-xa) ik ik
*hk'(lila) = {3% (11-13)} e @/l Tha e e e 2%a

(4.3.6)
It will be seen that this is of such a form that

v(ki+K |ka+K)) = O, K, + K ¢ O.
Hence from esquation (4.3.5)
C(quglkak4|..)v(k,+Ka|kg-Ka)v(kg+Ku|k4-Ka) =0
unless Ka = Ka'
Now if we are to obtain a second order density matrix of form
(4s1.1), then we must be sble to find for a given k; ko(kitky)
a value of Ka and values of Ks k¢ oee kZN such that

C(k1ka|k:k4|n)'(ka+xa|h-la) + 0,
But then
v(k, +K‘|kg-K‘) =0 unless K, = K .

This shows 'kika to be simply a product of two plane waves,
which result muet hold for all ks, ks We have thus shown that
method (B) of the Young-March scheme in one dimension is only
variationally valid when it reduces to the Hartree-Fock result
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(the wave funetion then being simply a determinant of plane
waves).

It must be remarked that Young and March were unable to prove
the satisfaction of the Pauli conditions on the first order
density matrix in their method (B). However, it is known that
satisfaction of the Pauli conditions does not ensure a
variationally valid scheme, and it would appear that we must
ensure the existence of a wave function directly. Nevertheless,
the above example shows that it may not be necessary to explicitly
build up the wave funetion to examine the validity of particular
trial forms of the two~body orbitals of equation (4.1.1).
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5. Locallsed orbitel method (with M. Darby)

We turn now to discuss an explicit method of setting up a
trial second-order density matrix, No really acmu-até form
for the whole range of electron densities has, as yet, been
found, but the method outlined here should be valid for densities
which are not too high.

5.1 Pgrst and seecond-erder matrices
The energy of the unifora system of any density may be

written as
BRI P e
(5.1.1)

where the energy is in atomic units, and

/IS

r, being the mean interparticle spacing, and y(r‘r) and the
pair function P(g'g) are for a gas of unifora density. We
take for the paramagnetic gas

2r(p1La’ B4La) = Z ' “(E" TR Bn) l(£a1-1'§n) (5.1.2)
Bn

The Bn are vectors of a body-centred lattice, and the prime on
the summation sign indicates that Ry = O is exdluded. a(p) 1s
a Wannier function for a simple cubic lattice (the b.c. lattice
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being made up of two of the simple cubic lattices) which has
nodes at all the lattice points of the simple cubic lattice,

We form the first order density matrix froa

v(La'pa) = ﬁ%?’ / T(ps Ta’ £+ D2)alse (5.1.3)
We write
1 1‘1503
a(p) = g lv(l‘g) o ak. (5.1.4)

n.B is the Brillouin zone for the simple cubic lattice (the vectors
of which we shall denote by § ). Inserting (5.1.4) in (5.1.3)
and letting N - o we obtain

Y(£1 22) = %;. [ 'v(s)'z 01.15-(21".’.2) k.

The kinetic energy is therefore given by
1 2 I - 1 8" 2 1,2

-ar | VD= -y nT | 9 1V x* ek,
80 that kinetic energy per particle is

Te-siy B [ v |2

ar o | Vg

vhich maybtmsewritten

L JU [ o® (£) V° a(z) dr (5.1.5)

It may be noted that we antomatically satisfy the Pauli condition

that the occupation numbers are less than one,

0<a(k) <1,
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for we can form a Bloch functien

t;(s) = Z a(g-gn)eis.gn - Z v(;-c-gn)e
Ba Bn

and this normalises to unity over the unit cell:

! ‘fn"x(s)" et gv&*&“”

i (s*-sn) T 4

Hence

v(k) < é everywhere.,

Por the potential energy, since P(p'r) = P)r’'-r), we obtain

per particle
[2p(p) - 1]

2p(p) = Z " la® ()"
Bn

We therefors have

V.t { Z' ja(2)1* ag -[ : } (50146)
B

|28

Hence the potential energy is just that of the orbital afp).
centred at the origin in the fields of point charges, one at

every other lattice site (the term [ ;‘E will be ignored below,
r
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cancelled by the self energy of the uniform background charge).
If we fora the periodic potential

V(p) = z l—?lfm (5.1.7)
Bn
we may write the total energy pesr particle as

%"ﬁ?[*’v’u‘a*i’:[['@) a(g)® dz-['.(f)"d:,

(5.1.8)

where we have taken the mean value of V(p) as zero. This is

of no consequence when we seek Euler equations with particular

trial forms of a(g) such as the one we now examine,

5.2 The Macke Transformed Wanpier Punctions

In order to generalize the scheme outlined above, we
replace the functions a(r) by Macke-transformed simple cubic
Wannier functions, given by:-

(Xe¥420)¥ @ (X) a (Y) a,(z) = at a(R) (5+2.1)

Here X = X(x), Y = Y(y), 2 = 2(z), and we restrict these

transformations so that x,(x+sx) = Xe(x); Xo(x) = Xq(=x).
Further Xy = dX/dx; X, = 42X/dx?®, etc., and the simple cubic

Wannier function ay is defined by
1 ikX
Cx(X) = ?] e ak
5 Iay

1 and nB are respectively the volumes of the unit cell for the
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simple cubic lattice, which has vectors §n’ and the Brillouin
zone for the same lattice, and are thus related through:-
ﬂ.ﬂB = 8x3,
It is convenient to quote here certain summation rules
for the simple cubic Wannier functions, Defining the length
b by 2y = 8b°, we have

) ar-g,) alzgy) = /.
£n

), Mg & alrgy) = ) aeg) fv aleeg) =0

£n 8n
z a‘(g-s‘_n) a‘;!' a(g-ﬁn) = - z ag; a‘(£-§n) ad; a(£'§n)
2n A

-- 323% . (5.2.2)

These will be needed in obtaining Euler equations, but before
we do this, we must see what energy expression (5.1.8) becomes
when we replace a(r) by the transformed function (5.2.1).

The kinetic energy term consists of an integral over all
space, the x-component of the integrand of which is just,

Yquzﬁ ay’az’{axt%‘; - %:l + a'xa{zx.x,*] + a"xaqui],

where a'x = dax/dx, etc. Similar terms hold for the y and z
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components. Now since X(x) is periodic in the lattice, we may
replace the integral over all space by a sum of integrals over
one zone, and then employing the summation rules (5.2.2) we
obtain for the kinetic energy per particle:-

xa xﬂa b!
5%,[ T . x,’} Y4Z4 4r + similar terms for y and
1

g components,
(542.3)
In order to obtain an Euler equation we require the energy to
be in the form of an integral over all space, and thus we
introduce the first of the summation rules (5.2.2) into (5.2.3),
obtaining: -
A [ (B -8 - S x) v foeie ¢ stmttar torme ror

All space

Replacing a(r) by the transformed functions (5.2.1) in the
Potential energy part of (5.1.8), we obtain

51{[ ag [V(g) - 1] ¥42,%, a*(R) a(B)
All space

1
= -@[ V' (p)X Y42, ap - -217[ 1 x,¥,2, a®(g)a(R)ar
fl All space
Here V/(r) is a localised potential. Again using the first
summation rule of (5.2.2) on the first term we obtain finally

for the potential energy per particle:-
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& [ V()X Y2, aB(pla(p)ag - ok f 1 x,Y,2, a®(g)a(R)ar

All space All space
(5+2.5)

The total energy per particle, using Macke transformed
simple cubic Wannier functions in this scheme, 18 thus given
by the sum of (5.2.4) and (5.2.5). We proceed now to obtain
the Euler equations for the transformation functions X,Y,Z.
Functions satisfying these equations will give the lowest bound
of the energy as given by (5.2.4) and (5.2.5).

5.3 Ihe Euler Equations

If we write the energy of our system in the form

e -[ I(X,Y,2,X;,Y4,%4,X2,Y2,22 )dxdyds
All space
then the functions X,Y,Z making € a minimum satisfy the EBuler
equations for our schsme. The variations in X,Y,Z must be
considered separately, and in particular, for the variations in

X we have:~-
[- -] ] o0
axe-O-[dx/dy]dsz I
- o0 b - -] - o0

Acsuming I to be zero at the limits x = £ &, we may write

[ar[asazo (5.3.1)
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A8 X o X + 0X; Xy » X4 + 0Xy; Xz - Xa + 08Xz, thus:-

611=§§ox+3?1-ox. +-§£ax.

Further

[3% ox, ar [dydz%[bx_t -[%%& ox ap

By our previous assumptions the first term on the R.H.S. 18 zero .

Similarly

[ﬁ;ox,a; =/3§;§; 8X ap

Now since 80X is arbitary, the integrand with respect to X must

vanish for all X, (but only X) so that (5.3.1) becomes

]ay[u{%-%%+3—§;§};}=o (5.3.2)

-® =
Similar expressions hold for variations with respect to Y and Z, but
here we will confine our attention to those with respect to X,
the Euler equation for Y and Z being obtained by changing the
variables in a cyclic way.

In evaluating (5.3.2) it is convenient to consider the
kinetic and potential energy terms separately. For the kinetic
energy part, I is the integrand of (5.2.4). Evaluating the
derivatives and combining terms we have for the kinetic energy

contribution to the Euler equation:-
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v & (20 (p)alr)) [" é!:?]}

The infinite integrals may now be written as sums of

integrals over the sides of the simple cubic unit cell. Since
we have only two integrations we obtain a sum ZS y,S z° where
Sy,sz are the y and z components of §n respectively. In order
to use the summation rules (5.2.2) it is convenient to introduce
a further summation, over Sx’ but it should be noted that this
now has to be carried throughout the working,. Using the

summation rules we obtain
a

w[E(m w H[ e[ e (5.3

where a is defined by 2 = 8al.

Using expression (5.2.5) we find that the potential energy
term contributes

g;_ [a.z [ e Y, z {aa(g) 4 (%) et & V)

- V(z) 2a(g) a'(z)}

For the terms involving V(g), the infinite integrals can again
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by replaced by sums of integrals over the sides of the unit
cell, and to allow use of (5.2.2), and for consistency with
(543+3) we sum over S,. Thus we obtain:~

a a
) ﬁ{l dy[a 4z Y,2.V(g) + 2% Z[ /dz .2t (28 )& &,—;%-)

-'u -
(5¢3.4)

The Euler esquation for X is now obtained by putting the sum of

(5¢3¢3) and (5.3.4) equal to zero. Before doing this we note

that if we choose the denéity of our system, y

h3k 3
Sl; = ﬁ
equal to unity, then we find:~-
1l=2; a-= 24; b = 12-}

Then we have:=~
a a

[ Y4z / Zy dx = La? = 23

-8 -a
Finally, since X,Y,Z,are assumed to have the same functional

form, F say, we may generalize the above terms for X4 and obtain

for our transformation function F the Euler equation:-

a a
A [ rrn) + gmon * 2o |-k [ ] asnemeve)
- “a

vh& Y [afurnmee 212 g2ip(x) - 5] = 0

grm== ((x-S )2 +y2+22]

(5.3.5)
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This equation gives the best transformation functions P,
It may be observed that in the limits of high and low densities;
F(x) = x gives the plane wave result in the limit A = O, and
Fy(x) = Z O(x - in) is a solution in the limit A - o,
i Work is proceeding on the detailed properties
of the solution of these Euler equations.
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Non-

S0 far, we have considered the influence of correlation
effects in a uniform electron gas., Unfortunately, this
Sommerfeld model neglecta certain features which are of central
importance in the theory of metals, and in particular averages
out the periodic potential due to the ions to a constant value,

Very recently, Bellemans and De Leener (1961) have reported
a many-body approach to the non-uniform gas problem. Their
results, which were simply guoted without proof, have apparently
been obtained by expanding the grand partition function of the
system in powers of the coupling parameter between electrons and
the positive (point) ions and between pairs of electrons. By
sumning infinite series of divergent terms, they were able to
obtain finite results for the energy per particle. We show
below that, by finding Dirac's density matrix in a self-
consistent framework, we obtain a result which is closely
connected to their final energy formula. Indeed, this may
be obtained almost at once for our theory, if we add the
Gellmann-Brueckner correlation energy for a high density unifora
gas to the energy calculated from our approach.



6.1 Energy and Dirac density matrix of a non-upniform electron gas

We shall eonsider the problem of electrons moving in a
pericdic latties of protens, in order to e¢ircumvent at present
the difficulties of introducing Hartree fields sssociated with
inner eleoctrona, and for the conduction electrons ws shall
adopt esseatially a Hartree description. We first write down
the diagensl element p(R) of Dirac's density matrix, *o first
order in the Hartree periocdic potential V(RX), using the density
matrix perturdatien theory of March and Murray (1961). If
is the magnitude ¢f the wave-vector at the Fermi surfaee, and if
we use atomic units throughout, we have them

3 2x,° V(Bs) Je(2, B - B
p(?) = ;’;, - =5 | &, )I; -(-z:,m )

where J1(p) = (sin p - p cos p)/p?. We ses from (6.1.1)

that the eonstant density po = k,’/3x" is modulated by the

periedic demsity cerrection, which we denote by p;e We now

introduce the Fourier compenents v(i!n) of the Hartree potemtial

V(®) through

’ (6.1.1)

V(@) = z v(R,) 01(2‘3)

->

*n

(6.1.2)

where the i’n are reciprocal-lattice vectors, and we impose self-

consistency through the Poisson equation,

Y(R) = kx Z 0 - 2 ) - uxp(¥)

%

57



1R B
- 4 ;. 2% | e (R), (6.1.3)
n

where the !n denote vectors in the direct lattice and Q2 is the
volume of the unit cell, Hence, substituting (6.1.1) and (6.1.2)
in (6.1+3) and using the result that

2,2 ic B 34 (2k,r)
Hage) = - [ae 7 -

(6e1eks)

-

we find

V(-x.n) 3 - ‘T_"'L}%%;Ey R En + 0, (6.1.5)

=0, R, =0. (6.1.6)
This result, combined with (6.1.1) and (6.1.2), defines the
self-gonsistent electron density in this approximation.

We next write down the potential energy U in the Hartree
approximation, Ir VN and Ve denote the potentials due to the
nuclei and the electronic charge distribution respectively, then
vV = VN + Ve and it may readily be shown from the full Hamiltonian
that the potential energy is given by

u.u“+/¢3pvn+i[ai'pve, (6.1.7)

where Um is the Coulomb interaction energy of the unscreened

58



protons; the second term is the electron-nuclear interaction
energy and the third the electron-electron potential energy.
Separating off the Madelung energy of the proton lattice in a
uniform backgreund of electrons with density po, we may rewrite

(6.1.7) in the fora

U = Uyagelung * ¥ j aF py (F) V() + ’l'/ a® p4 (P) VN(?). (641.8)

where we have used the fact that [ a® py(¥) = 0. To obtain the
total energy E we must add the kinetic energy contribution, which
in the density-matrix perturbation-theory has been given by
Corless and March (1961) as

k‘
T = Tpgray ¢ aw [[ @ & V) V()

Ja (Zkr B, -7y )
x —
(Zkr ?z - ?1 )2

+ 0(Vv3), (6.1.9)

where ctne first term is the usual Fermi energy for free electrons,
Rewriting (6.1.9) in terms of p, defined from (6.1.1), 1t 1s
immediately seen that the second term in (6.1.9) cancels the

second term in (6.1.8) when we forn E = T + U, Thus we find

E = Tpermt * Uadelung * + [ a? p, (R) Ve(®). (6.1.10)

The last tera ean be evaluated by using the Fourier-series fora
of py and the fact that VN(?) is a sum of Coulomb potentials over
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the lattice sites, The contribution from this term to the
energy per particle may then be readily obtained as

Z ‘ﬂ J(kr,,xn). (6e1011)
2"

Adding the usual exchange and correlation energies to the
Hartree snergy derived above, we obtain the result of Bellemans
and De Leener if the Fourier components V(?h) in (6.1.11) are
replaced by the unscreened Coulomd values uxr°/31 xh’. Our
result appears to have more direct physical significance in that
screening is included from the outset.
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6.2 Discussion of natural spin ortitals
A complete set of Bloch functions ivki(g)} will be defined

by the expressions (for an infinite crystal)

tsi(;:) = Z ui(s-Bn)eis.g“ (6.2.1)
Ry
j ail(z_gn)a.a(g-gn)dr = 613 b(g., .gn)‘ (6.2.2)
All space

It follows that

/ Iﬁhi(g)l 2 dr =1 =~ the normalisation is independent
Q of ;o

Now

1kaR = -1k¢.R
[ t;,i *(z) v!z-" (plag = Z[ a,%(z-2,) o (z-By)e kB, -ikeB,

All space g.,gn

1(ka=k+).R
= 613 z (] n.
By
i.e.
[ 4 =@, Y@ = 2y 0, z 5(ks - ke + By (6.2.3)
All space 5.

v(g,z'), when defined for a finite orystal, will obey
periodic boundary conditions analogous to those imposed on the
one particle Bloch functions, These fora a conplete set so that
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v(z’',z) may be exparmded in terms of them over the domain of the
crystal., We shall treat the imfinite crystal case, We write

e =) [ k[ ey yekon Sen Y@, (6.2
13 p 9y
To obtain the natural orbitals we must diagonalize cij(gq,kg).
We shall show it to be already diasgonal in k.
Equation (6.2.4) only requires Cij(k1,k3) to be defined
when k¢ and ke lie within the Brillouin zone. However, we shall

for mathematical convenience take it doubly periodic in the sense

013(51*5.|§2+5n) = 013(51’5810 (6'205)

Our results will follow from the imposition of the
periodicity condition expressing the arbitrariness of origin in
the corystal:

v(z’'-R,.2-8,) = v(z',2). (6.2.6)
We define the mixed matrix
ig.p’
v(x,r) -[ v(z',g) ¢~ £ ap’. (6.2.7)
All space

Thus

K

7(5'£+§n) = [ 7(5' ’£+gn)°f~ 1x(£'+§n)

* ap’ = ] v(p'+R ,n+R e
i.e.

150511
1(5,5)e = v(%,2+B, ). (6.2.8)
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Now sinee y(x,r) is shown to be an eigenfunction, eigenvalue
ix.R
e~ "B, of the translation operator Tgn,

v(g,2) = GJ(o,s) vx’(g). (6.2.9)
J

Let us now write,

“'1 9 [ !
R N R TS
n

in equation (6.2.3). We see that

Y(E..r_) = 8x3 ZI ak 013(5’5) Vii({s) *KJ(E)!
13
o

¢y 4@ = o ) [ ax o, e, Mew ).
0

Multiply through by 'ko“(g) and integrate over all space.
(6.2.3) shows that

), CslE)03,) Olko-giEy) = 8x° ) [ & oyt ) 6(ko=k+B, )V, *(g)
3 k 13 s k

or c:(g) Z $(k-x+K ) = 8x® Z 013(5,5) '1.(5)'
& i

Intrating over the Brillouin zeme with respect to k and putting

Cy 4(8) '/ 313(5-3)“3.
2y
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oy(g) = 8s° z C, ) V,*(k)- (6.2410)
i
It should be noted that equation (6.2.5) implies the
periodicity of 01J(£)=
013(54-5‘) = 0“(5). (662.11)

Our expression for 'r(lg,g) may now be rewritten as

v(x,z) = 8x° Z Cy4(5) v, *(x) 15’(;:).
1]

Hence

KD

~ix.r’ -
vgp) = g [ vl a - Z [ oV v e =" o
1J

-1 +. ° '
) Z Z/ 0y (), *(s+E, )0 (p)e EEE g
13K, B
1,04

v(g'.z) = z IR COTRITS (6.2.12)
1

Let us consider the effect of applying a unitary

transformation

Spa() = ) oy (630, 5(B)agp (k) = ) @y, KRB0y y()m (k)
1] 13

where
Z oyt (k) (k) = Z a, (k) a,,(k) = 8,,, independent of k
1 1

and also define
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800 = ) MR 9 = ) ey (0)v ).
m

n

;j% o (808, (2 )9, ° (£)ax

=Y ) [ oy 0e Klan (6)e, M W (2 4 (p)ak

K¢ 1]
mn

L ] Cy5(6)8 3001 ¥ (2! 0 (2)dk
1Jk&

13 “3

'We now prove that the set I¢k‘(£)} consists of Bloch functions
by forming

a,(z) = f;!;[ ¢;(£)d§

and demonstrating that

] af(z-z-)ap(f,-gn)d;: = 8, 0(R,,R,)
All space
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We have

9y ay(x) = z [ une™(8) ¥ (x)ag = ZZ (22, [ 8 t()e o Ve

Hence
2y° [af(;:-R Ja (£-R )agp = ZZ / dk1] dk,
m Bn’gv
bt ? -3 I R
e [N X RIWEE 35 BT

1(ka=ks).R, 1k4(R =R ).
= }: }:‘/ d;,[ dEz au‘(§1)ampg(sa)e ( £2 ) ~v ~1\%n ~m

Oor

1k1(R

[ e epae x8er = [ 4 e o) Z 8 (61 D %(k4)

- ﬁjﬁ [ anl‘-* o (gn-Bm)%p.

The assertion is proved.

Now we note that because of the essential equivalence of
Eand k + K, a"m(g) can be taken as periodic in k.

#e see that {¢5i(g)} 18 a set of Bloch functions for all
unitary transformations, including that making cij(g) diagonal,
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Thus
v =) [ enttE) vl
1

and the natural orbitals Hxi(;;)} are Bloch functions,

To summarize, we can write

rgro = [ e [ d oyyokn, ey, @
3% %
where “;1} is a complete set of Bloch functions.
0“(51 ,ka) 18 shown to be diagonal with respect to k. and
ka by consideration of the mixed matrix v(x,r) which is such that

158,

v{x,z).

Y(B pE"Bn) = &

We show that if we apply unitary transformations (ak&(;) to the
(c“(;)) we obtain the set I¢;1 = : ‘m‘(l)';n] which are shown
te be Bloch functions.

The occupation numbers of the natural orbitals we obtained
by applying unitary transformations diagonalising the (c1 J(g)).
The natu»al orhitals, obtainable by the same unitary

transformation must therefore be Bloch functions,
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